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Abstract 24 

Increasingly intimate associations between human society and the natural environment are 25 

driving the emergence of novel pathogens, with devastating consequences for humans and 26 

animals alike. Prior to emergence, these pathogens exist within complex ecological systems that 27 

are characterized by trophic interactions between parasites, their hosts, and the environment. 28 

Predicting how disturbance to these ecological systems places people and animals at risk from 29 

emerging pathogens—and the best ways to manage this—remains a significant challenge. 30 

Predictive systems ecology models are powerful tools for the reconstruction of ecosystem 31 

function but have yet to be considered for modeling infectious disease. Part of this stems from a 32 

mistaken tendency to forget about the role that pathogens play in structuring the abundance and 33 

interactions of the free-living species favored by systems ecologists. Here, we explore how 34 

developing and applying these more complete systems ecology models at a landscape scale 35 

would greatly enhance our understanding of the reciprocal interactions between parasites, 36 

pathogens and the environment, placing zoonoses in an ecological context, while identifying key 37 

variables and simplifying assumptions that underly pathogen host switching and animal-to-38 

human spillover risk. As well as transforming our understanding of disease ecology, this would 39 

also allow us to better direct resources in preparation for future pandemics.     40 

 41 

Introduction 42 

Emerging infectious diseases (EIDs) are increasing in frequency as global environmental and 43 

anthropogenic changes accelerate1–3. For animal-to-human (zoonotic) spillover and subsequent 44 

pathogen amplification to occur, a complex set of epidemiological, ecological and behavioral 45 

conditions that influence the composition, infection dynamics, contact rates and likelihood of 46 



 3 

infection within and between host populations must align4. Mitigation of future pandemics will 47 

rely on our ability to understand how these mechanisms converge to result in exposure of people 48 

to novel pathogens, and identify areas at higher risk of pathogen spillover, so that limited 49 

resources for animal and human surveillance and risk mitigation efforts can be proactively 50 

directed to these sites5.  51 

 Accurate forecasting of spillover risk requires a clear understanding of the pathogen 52 

dynamics at play in differing global biomes. Interactions between parasites (throughout this 53 

article we use the term parasite to describe all pathogenic (disease causing) and non-pathogenic 54 

organisms that colonize and can be transmitted between hosts), their hosts, vectors and the 55 

environment over defined geographic and temporal scales can be thought of as “episystems”6,7 56 

(Figure 1). Pathogen communities are focal points of episystems, where competition and co-57 

existence between pathogens and commensal organisms for resources within hosts regulates 58 

virulence and transmission, while exerting effects on host fitness and behavior that percolate 59 

across trophic scales. The composition and function of these parasite communities are also 60 

defined by the top-down impacts of environmental conditions on the fitness, distribution and 61 

interactions between host populations. By linking host population dynamics to the composition 62 

and turnover of parasite communities inhabiting these host ‘patches’, metacommunity theory can 63 

be used to place zoonotic pathogens and their emergence into new host populations in an 64 

ecological context (an approach we refer to as ‘pathogen community ecology’)8,9. While 65 

empirical investigations can reveal important associations between host and parasite 66 

communities (e.g. 10–13), modeling of the fundamental processes underpinning these relationships 67 

provides the only replicable opportunity to understand how natural and human-driven changes to 68 

these systems modify the risks that pathogens pose to humans, and to forecast change in these 69 
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risks. The scale of this computationally intensive task—compounded by limited data, complex 70 

and often nonlinear relationships, and high levels of uncertainty—has so far eluded conventional 71 

epidemiological approaches. We propose that rescaling and novel structural reorganization of 72 

models for these systems now make this goal attainable. 73 

 Our understanding of infectious disease transmission has come a long way in the past 30 74 

years14,15; modern epidemiological models facilitate more accurate predictions about pathogen 75 

transmission and disease risk than ever before. Being rooted within foundational concepts of 76 

single-agent, single-host systems (such as the basic reproductive number R0), most existing 77 

epidemiological models—including more recent frameworks such as stochastic metacommunity 78 

models and multi-pathogen SIR models—require significant modifications if they are required to 79 

explore the interactions and feedback loops that exist between multiple pathogens, hosts and 80 

their shared environment8,16,17. Statistical and machine learning methods that have been adapted 81 

from ecology (e.g. species distribution models, hierarchical spatio-temporal models, joint species 82 

distribution models) have made significant contributions to public health by mapping infectious 83 

disease risk and are capable of identifying relationships between zoonotic pathogens, parasite 84 

communities, macro fauna and ecosystem structure and function18–20. However, using these top-85 

down approaches to extrapolate beyond existing conditions can be problematic, as they lack a 86 

mechanistic framework with which to test the impact of management changes and interventions 87 

on infectious diseases21–23.  88 

 Whole systems approaches, akin to those used to forecast the world’s weather, study 89 

biological regulation within the human body, and manage the World’s fisheries, are increasingly 90 

applied in ecology to understand how anthropogenic forces (such as climate change) change the 91 

behavior of ecological systems. Predictive systems ecology24 promotes the use of mechanistic, 92 
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process-based models, parameterized by observational and experimental data, to understand and 93 

predict the future state of ecological systems. Outputs are ‘emergent properties’ of these models 94 

– quantitative measures for how different components of the ecosystem change over time. 95 

Models of terrestrial and ocean ecosystems (e.g. dynamic global vegetation models, ocean 96 

ecosystem models, general ecosystem models)25 have been used to generate estimates of primary 97 

production from forests, community structure of phytoplankton, and have recently been extended 98 

to model the World’s ecosystems26. Unfortunately, none of these approaches consider hosts and 99 

their parasites, which exert a ubiquitous influence on all free-living species. We believe that now 100 

is the time to extend this approach into the fields of epidemiology and disease ecology27. 101 

 Applying systems-level thinking to forecast disease emergence will necessitate a 102 

fundamental change in how we conceptualize infectious diseases. In much the same way that a 103 

mechanic working to improve the future performance of a race car requires complete knowledge 104 

of how its engineered components are assembled and interact during operation, practitioners 105 

looking to predict and affect the future state of episystems require models that capture the suite 106 

of biological and social mechanisms underpinning the behavior of host and pathogen 107 

communities. Process-based models, in which the fundamental ecological and epidemiological 108 

mechanisms determining disease risk are described in a mathematical framework, are ideally 109 

suited to this task. Recent efforts to simulate and predict the locations of historic and future 110 

Ebola virus and Lassa fever outbreaks in West Africa (from environmental, host and 111 

epidemiological data using ‘environmental‐mechanistic models’) demonstrate the potential of 112 

systems models in forecasting emerging disease risk, but to date these are relatively limited in 113 

scope, focusing on single pathogens and omitting aspects of within-host pathogen dynamics28,29. 114 
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 We show the relevance of predictive systems ecology models to epidemiology by 115 

explaining how they could be developed and applied to forecast and ultimately improve our 116 

understanding of pathogen community ecology and how this translates to emerging disease risk. 117 

From these models—which we term ‘General Episystem Models’ (GEpMs)—the dynamics of 118 

functionally similar pathogens would emerge from the cumulative responses of parasites, their 119 

hosts and vectors to environmental inputs, rooted in ecological and evolutionary theory. To 120 

ground these efforts in real-world episystems, we propose model refinement and validation as 121 

part of a global experimental network representing replicates across a common set of 122 

anthropogenic environmental drivers for disease emergence (e.g., habitat fragmentation, 123 

agricultural intensification, pollution, urbanization) in terrestrial and marine environments. 124 

Experimental and observational data could be used to develop and validate standardized 125 

approximations for describing broad-scale levels of host and parasite organization (genetic, 126 

individual, population, community) and their interactions under different environmental 127 

conditions across spatial and biological scales.  128 

 129 

System structure 130 

Host, Pathogen and Vector Population Dynamics. Where possible, and in common with 131 

general ecosystem models, fundamental concepts and processes derived from ecological and 132 

epidemiological theory (many of which already exist and are backed up by data) should be used 133 

as general baselines with which to model host, parasite and vector population dynamics24. The 134 

complexity of microbial ecology and evolution, its relative infancy as a field of study, and our 135 

lack of knowledge on parasite diversity30, mean that uncertainty will pose a major challenge in 136 

incorporating pathogen community ecology into predictive systems ecology models. While 137 
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GEpMs should be no more complex than is necessary to realistically represent episystems, 138 

sufficient information on the biological organization of parasites, their hosts and vectors, and the 139 

interactions and feedback between this triad and their abiotic and biotic environments, is required 140 

for emergent behaviors of pathogen communities and the risk that they pose to humans to be 141 

considered reliable. Applying simplifying assumptions as a means of reducing complexity in 142 

these models will therefore be central to achieving a balance between predictive accuracy, and 143 

methodological and computational feasibility (Figure 2).  144 

 A simple but effective form of dimension reduction commonly used in community 145 

ecology, and favored for predictive systems ecology models, involves grouping organisms that 146 

share life history traits. These similarities dictate that they interact with one another and their 147 

environment in a similar manner, so that they are considered identically for modelling purposes. 148 

For example, by grouping organisms into functional groups, the Madingley Model has been able 149 

to capture global patterns in broad ecosystem structure with a reasonable degree of accuracy26. 150 

Similarly, trait-based grouping of parasites has been identified as an approach that would 151 

contextually simplify modelling of complex within- and between-host pathogen dynamics, and 152 

being more directly relevant to ecosystem function, provide greater deterministic and predictive 153 

power than taxonomic groupings9,31,32. Representing parasites, hosts and vectors as cohorts that 154 

share common resource mechanisms and functional traits (e.g., immune evasion strategies for 155 

pathogens, and reproductive and feeding preferences for pathogens, commensal organisms, hosts 156 

and vectors), could therefore provide much-needed simplification to overcome data paucity and 157 

the logistical challenges of trying to model all individuals in large and complex episystems (Box 158 

1, Table 1)26,33. By simplifying and compartmentalizing GEpMs in this way, these models would 159 

not be able to make predictions about the behavior or emergence of specific pathogens. Rather, 160 
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they would possess the predictive power to model how the relative abundance of functionally 161 

related groups of pathogens (e.g., reverse-transcribing RNA viruses, extracellular drug-resistant 162 

bacteria, intracellular apicomplexans) changes across space and time, while reproducing the 163 

cross-scale biological processes that are responsible for this variation (Table 1). 164 

 Since ecosystem structure and stability is predominantly governed by consumer-resource 165 

interactions between species – extending, for example, from cellular invasion of viruses within 166 

bats, to the impact of bats on arthropod herbivory of the tropical rainforests that they inhabit34 – 167 

identifying generalizations for these interactions (“food webs”) will greatly simplify mechanistic 168 

models of the ecological processes that link cohorts of parasites, their hosts, vectors and the 169 

environment. Lafferty et al.35 demonstrated how classical models of food web structure 170 

(including predator-prey, pathogen, autotroph, decomposer and scavenger models) could be used 171 

to generate a general consumer-resource model, capturing all forms of species interaction and 172 

revealing new insights into the commonalities of different consumer-resource interactions. 173 

Recent studies suggest that complex microbial community dynamics can also be predicted by a 174 

relatively simple set of rules expressed as species functional traits and metabolic properties of the 175 

environment (such as nutrient availability)36,37.   176 

 Because interactions between parasites, hosts, vectors and the environment occur across 177 

and between a multitude of microscopic and macroscopic scales, course-grained statistical laws 178 

such as allometric scaling rules will also be crucial to identify commonalities that can be used to 179 

resolve the underlying interactions between parasite, host and vector communities at a 180 

computationally feasible resolution38,39. Body mass scaling laws are widely used in ecology, and 181 

represent simple predictors of metabolism, abundance, growth and mortality across taxa39. 182 

Recent work has explored these four scaling laws across all eukaryotes, and found that a scaling 183 
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regime based on the ontogenic and reproductive growth of individuals holds consistently across 184 

all species, and could therefore be considered a general basis for the assembly of biological 185 

communities39. Unsurprisingly, scaling rules also apply to microorganisms – a ‘dominance’ 186 

scaling law (representing the number of individuals belonging to the most abundant species in a 187 

defined space) predicts microbial diversity from individual plants and animals to the entire 188 

ocean’s sediment40, and log-log scaling rules link gut microbial diversity and animal mass across 189 

mammals and birds41. With next-generation deep sequencing data being generated at an 190 

exponential rate, further unifying principles for biological scaling across eukaryotes and 191 

prokaryotes are likely to emerge. Recent work shows that by incorporating allometric scaling of 192 

hosts (and other correlative biological relationships) into mechanistic disease transmission, the 193 

influence of changes in host communities (such as biodiversity) on pathogen dynamics can be 194 

predicted – causal relationships that are difficult to measure directly42,43. Collaboration between 195 

landscape ecologists, mathematical epidemiologists, immunologists, parasitologists, and disease 196 

ecologists who are advancing our understanding of pathogen community ecology, will be 197 

required to extend scaling rules to consumer resource models that describe host-pathogen 198 

dynamics in multi-agent, multi-host systems across local and regional scales43–45. 199 

 200 

Evolution. GEpMs should also incorporate evolutionary change into parasite and vector 201 

population dynamics, as rapid generation times that vary widely between microorganisms 202 

(bacteria, viruses fungi), macroparasites and vectors are likely to outpace the duration of model 203 

projections. In the simplest terms, parasites could be grouped by evolutionary traits that take into 204 

account rates of recombination – for example as clonal or non-clonal organisms46 (Box 1, Table 205 

1). At a finer resolution, Gorter et al.47 propose a general framework to predict the effects of 206 
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evolutionary changes on microbial communities, and develop a cellular automaton model for the 207 

positive or negative fitness effects of mutations on the composition of a simple, spatially 208 

structured microbial community. Others have developed simulation models for the effects of 209 

individual-level microbe fitness and host selection on microbiome diversity and the composition 210 

of beneficial, commensal, and pathogenic microorganisms48,49. How mutualistic or antagonistic 211 

interspecific interactions that are conferred by mutation scale to more complex microbial 212 

communities is an area of great uncertainty, but there is evidence to suggest that the general form 213 

of such interactions at the community level is responsible for shaping microbial assemblages50–214 

52. Carefully controlled experimental studies that improve our understanding of how specific 215 

traits (gained through mutation or recombination and that are thought to drive the interaction 216 

between species) impact fitness, are required to refine these models so that their predictive power 217 

can be tested against real-world parasite and vector communities47 (Figure 2).   218 

 Stochastic evolutionary processes (i.e., random genetic variation of pathogens such as 219 

genetic drift) will be particularly difficult to model mechanistically and might be best 220 

approached using correlative models that generate simple statistical relationships (such as power 221 

laws53) between patterns of genetic variation within parasite assemblages, community structure 222 

and the environment. Recent studies that have successfully predicted evolutionary processes in 223 

microbial communities using knowledge of community architecture and environmental 224 

conditions provide evidence that microbial community structure can be forecast without 225 

requiring a detailed mechanistic understanding of evolutionary processes54,55. The increasingly 226 

large data sets provided by next-generation, high-throughput sequencing provide a rich resource 227 

that can be mined for biologically significant relationships that link pathogen genetics and 228 

ecology using machine learning approaches56. Parameters derived from correlative models can 229 
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then be used to simplify, and parameterize, semi-mechanistic models for parasite evolution and 230 

fitness described above54 (Figure 2). 231 

 232 

Parameterizing GEpMs with data  233 

 Once a prototype GEpM has been defined from existing knowledge, a large amount of 234 

data would be required to refine and validate the system’s structure. Because of the extensive 235 

scales at which episystems operate, data gathering efforts – both experimental and observational 236 

– would need to be undertaken as part of an ambitious cooperative approach that takes place 237 

across spatial and temporal scales relevant to the processes being modeled (Figure 2). For such 238 

an effort to be practical and cost-effective, experimental design would need to be an iterative 239 

process, in which the model is used to highlight data gaps and develop hypotheses, which in turn 240 

inform study design and generate results which are utilized to further simplify and constrain the 241 

GEpM (Figure 2)57,58. By closely mimicking specific microbiological processes of interest, 242 

single-site experimental trials conducted in animal models provide a practical and targeted way 243 

of studying the fundamental dynamics (e.g., competition, mutualism, evolution) of parasite 244 

communities within the host environment, and identifying feedback loops between parasite 245 

communities and their hosts (e.g., via the immune system). Under carefully controlled field 246 

conditions, animal models would also be appropriate for studying the mechanisms by which 247 

specific abiotic drivers impacting hosts (such as nutritional and psychological stress) and host 248 

population dynamics influence the accumulation and turnover of parasite communities.  249 

 For GEpMs to be parameterized with simplifying assumptions that can account for how 250 

environmental inputs (such as land-use and climate) structure parasite, host and vector 251 

populations, observational and experimental field data will need to be collected under ‘real-252 
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world’ conditions. In the first instance, incorporating parasite communities into well-established, 253 

long-term studies of intact ecosystems would be an excellent way to test how baseline parasite 254 

community dynamics scale across relatively stable ecosystems. For example, sites such as 255 

Yellowstone National Park where long-term studies have been conducted on elk, bison, wolves 256 

and bears and their interactions within the park provide opportunities to compare the parasitic 257 

fauna of predators and prey, seasonal variation in these, and also their interactions with well-258 

studied pathogens such as Brucella spp. in bison and elk and scabies and canine distemper in 259 

wolves59,60. The diets of grizzly and black bears have been well characterized, as they have for 260 

most species in the park, so temporal studies could be applied to examine how life history traits 261 

like annual hibernation impact mammalian microbiomes61,62. Studies in Yellowstone could be 262 

expanded to include data from the Yellowstone to Yukon Conservation Initiative (Y2Y) that has 263 

set up experimental sites along a vast longitudinal gradient63. This would allow examination of 264 

how parasite communities change along a climate gradient that spans multiple ecosystems. 265 

 The effects of anthropogenic environmental change, which manifests on pathogen 266 

community ecology at both fine and broad spatial scales, would need to be studied 267 

experimentally and by observation under differing levels of anthropogenic stress. Consider a 268 

pastoral grassland system for example. Here, controlled experimental trials in grasslands can 269 

provide insight into how local-scale forces (such as agricultural practices) shape host and 270 

parasite populations and their interactions with the environment within and between plots64,65. 271 

Upscaling to landscapes, where the effects of environmental filtering and dispersal on host and 272 

vector populations are greatest, observational studies conducted using remote monitoring devices 273 

along gradients of human activity (such as the ‘Biome Health Project’ 274 

https://www.biomehealthproject.com/) can be used to estimate how anthropogenic environmental 275 



 13 

change impacts the spatial distribution of host and vector populations (e.g., ungulate wildlife, 276 

livestock, mosquitos, ticks)66. When paired with metagenomic and metatranscriptomic 277 

sequencing, associations between hosts and their environment can be related to pathogens and 278 

their functional roles within parasite communities, through blood-meal or gut content analysis67. 279 

Collecting these ‘real-world’ observations over time will be especially important to elucidate 280 

evolutionary processes, and perturbations that can disrupt competition between parasites, leading 281 

to pathogen colonization51,68,69.  282 

 GEpMs need not be restricted to terrestrial settings, as a similar theory and data gathering 283 

approach could be used to develop them for aquatic systems, where the risk posed by infectious 284 

diseases is high (such as coastal shorelines). However, in contrast to terrestrial systems, GEpMs 285 

would need to be refined to account for differences in aquatic systems that impact the dispersal 286 

of pathogens70. Experimental trials that focus on aquaculture species could elucidate the 287 

dynamics between parasite and host communities, while observational studies conducted at a 288 

broader scale could determine the mechanisms that cause certain aquatic habitats, such as 289 

marshes71 and seagrasses72, to remove and potentially destroy human pathogens that invade these 290 

habitats. In both terrestrial and aquatic systems, sentinel interfaces deemed important for inter-291 

species disease transmission and zoonotic pathogen spillover would make particularly useful 292 

study sites where the experimental approaches outlined above could be used to link patterns of 293 

parasite diversity to host and vector population dynamics, and the environment.  294 

 295 

System dynamics and spillover risk 296 

Once built, a GEpM would simulate how functional groups of pathogens behave under varying 297 

environmental and anthropological inputs (e.g., spatially explicit data on climate change, habitat, 298 
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socioeconomics and human distribution), generating results that can be used to evaluate human 299 

disease risk across land or seascapes. To achieve this, system structure – comprising cohorts of 300 

parasites, their hosts and vectors, each defined by functional traits – would be modelled within 301 

grid cells that represent a layer of spatially heterogeneous environmental and anthropological 302 

conditions across the land or seascape under consideration26 (Box 1, Figure 3). In line with 303 

existing general ecosystem models, it wouldn’t be unreasonable to expect a process-based GEpM 304 

to be capable of simulating episystem dynamics within any ecosystem and at any level of spatial 305 

resolution. Properties of pathogen communities (e.g., the relative abundance and biomass of 306 

different functional groups) would manifest within each grid cell over consecutive model 307 

iterations, emerging from macro-scale processes at the level of individual host and vector 308 

cohorts, and in accordance with their responses to environmental and anthropogenic conditions 309 

within that grid cell (Figure 3). Comparison of pathogen functional group abundance (and host, 310 

and vector abundance and distribution) with empirical data collected within sentinel land and 311 

seascapes, would enable validation of the model’s results under different environmental 312 

scenarios. 313 

 Incorporating human behavior into GEpMs will be critical to account for the impacts of 314 

human activities on pathogen community ecology and generate meaningful estimates of human 315 

disease risk. With the exception of administering medical treatments to livestock, we would 316 

expect anthropological effects to manifest indirectly on parasite communities through changes in 317 

the distribution and composition of host and vector populations resulting from the top-down 318 

impacts of climate change, human-mediated introduction of invasive species, land-use change 319 

and fragmentation, and variation in livestock-keeping or aquaculture practices. As such, rather 320 

than including humans and their activities as agents within the model, GEpMs could follow 321 
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general ecosystem models in accounting for human impacts as exogenous factors, incorporated 322 

into climatic, land-use, socioeconomic or human demographic layers that are inputs for the 323 

model26. For example, a discrete harvesting parameter based upon socioeconomic data could be 324 

used to constrain the growth of livestock cohorts with the model. Socioeconomic determinants of 325 

livestock keeping are relatively well understood, and models pairing social, economic and 326 

ecological systems show that the impacts of humans on the environment and vice-versa can be 327 

modelled in a predictive fashion73,74.  328 

 To estimate human spillover risk, predictions for the abundance and distribution of 329 

pathogen functional groups made by GEpMs would need to be expressed in terms of human risk. 330 

The risk of disease outbreaks in people can be quantitatively expressed by the following 331 

equation: Risk = Hazard x (Vulnerability x Exposure), where hazard is the availability of 332 

pathogens to infect a human at any given time and space, exposure is people’s contact with these 333 

pathogens, and vulnerability is the likelihood of infection occurring upon contact75. General 334 

mathematical expressions that use this framework to measure animal-to-human spillover risk 335 

have been proposed4,76, and in generating estimates of abundance for pathogen cohorts, GEpMs 336 

could be used to predict hazard for groups recognized as emergent threats (such as negative-337 

strand RNA viruses, or drug-resistant bacteria) within these models (Figure 3; Box 1).  338 

 339 

Control and design 340 

We think that GEpMs could radically improve our understanding of epidemiological processes 341 

occurring in human-modified landscapes, directing surveillance and control efforts for emerging 342 

diseases, and ultimately identifying the stability of parasite communities within landscapes. 343 

Since forecasting of disease emergence is primarily informed by phenomenological studies77, 344 
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GEpMs could ensure that health policy decisions are guided by an understanding of how 345 

epidemiological systems actually function. For example, applied to ecological systems under 346 

anthropogenic stress (we use the examples of a grassland ecosystem in Figure 3 and coastal 347 

ecosystems in Suppl. Figure 1), GEpMs could be used to create dynamic risk maps for priority 348 

groups of pathogens (e.g., negative-strand RNA viruses which include zoonotic viruses 349 

responsible for Ebola, hantaviruses, influenza, and rabies), and forecast how these might change 350 

in response to climate change, land-use change, population and socioeconomic trends. Because 351 

pathogen dynamics would emerge from spatially explicit environmental and socioeconomic data, 352 

computers of the future could run these models at broad spatial scales to provide real-time 353 

forecasting for priority groups of pathogens.  354 

 Once armed with a more detailed quantitative and mechanistic understanding of the role 355 

of parasites in natural ecosystems, a key question remains how progress can be made towards 356 

preventing and controlling outbreaks of infectious agents, or breakdowns in ecosystem services. 357 

The best way to confront this might be to ‘reverse engineer’ these problems. For example, we 358 

know that vital ecosystem services such as the cleansing of air and water are driven by a 359 

diversity of species within the ecosystem. If these ecosystem functions could be characterized as 360 

outputs from general ecosystem or episystem models, it would be possible to examine the ways 361 

in which their relative production declines as the abundance and diversity of species that drive 362 

the pathways changes (sensu Dobson et al.78). Applying these principles to emerging infectious 363 

diseases, where the primary drivers of animal-to-human spillover are known to be the wildlife 364 

trade, and destruction and fragmentation of tropical forests, GEpMs could be used to identify 365 

species that carry significant burdens of pathogens with characteristics that would make their 366 

appearance in the wildlife trade particularly problematic (low specificity, unusual range of 367 
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hosts). What would this then tell us about minimizing species loss and reductions in abundance 368 

in ways that minimize loss of ecosystem function and reduce risk of human exposure to 369 

emerging pathogens? Armed with knowledge of the ecological mechanisms that systematically 370 

control the state of host and pathogen communities, novel targets for mitigating spillover risk 371 

could be identified and tested9 – such as creating spatial buffers between hosts, managing habitat 372 

to control host and vector populations79, or encouraging changes in livestock-keeping practices 373 

and other behavioral risk factors for disease emergence80. In this way, strategies to modify 374 

epidemiological processes and thereby disrupt pathogen spillover, could be designed on the basis 375 

of ‘in-silica’ simulation. 376 

 The considerable challenges associated with developing these models, and their 377 

limitations, should be recognized. As is the case for general ecosystem models, acquiring 378 

sufficient data to parameterize and validate GEpMs represents a significant obstacle to their 379 

development. We therefore suggest that initial efforts focus on developing GEpMs for areas 380 

where long-term studies of free-living species are ongoing, and where concerns are increasingly 381 

expressed that pathogens play a crucial but only partially understood role in structuring 382 

communities of hosts. For example, longstanding ecological monitoring projects in ecosystems 383 

such as Yellowstone81,82, The Serengeti83, Gorongosa84 and the Galápagos National Parks, where 384 

rich historical datasets of pathogen prevalence exist from different trophic guilds of hosts, would 385 

provide valuable resources with which to begin parameterizing and validating GEpMs85–87. To 386 

scale predictions beyond well-characterized sentinel landscapes and achieve the impact we 387 

envisage relating to predicting emerging disease risk, a coordinated global effort will be 388 

required. Although daunting, the challenge of conducting and connecting studies that scale from 389 

individual hosts, to host populations in experimental plots and across landscapes, could be met 390 
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by a distributed experimental network – a collaborative effort between scientists, consisting of 391 

multifactorial studies replicated across many sites, and conducted using standardized protocols 392 

that enable comparison and sharing of data88. This form of collaboration across sites is not 393 

without precedent in ecology – for example the US National Science Foundation’s National 394 

Ecological Observatory Network (NEON)—which is now collecting data on host and parasite 395 

communities)89,90—and the Smithsonian’s Forest Global Earth Observatory (ForestGEO)91 and 396 

Marine Global Earth Observatory (MarineGEO) networks, apply rigorous, standardized data 397 

collection protocols across sites to monitor long-term ecological change. The availability of 398 

high-resolution geospatial observations, coupled with rapid advances in autonomous biosensing 399 

technology, promise the ability to collect large quantities of biological data across spatial and 400 

ecological scales, and at relatively low cost. 401 

Although a sizeable initial grant would be required to establish such a network on an 402 

international scale, the necessary expansion would be constrained by hypotheses generated by 403 

the model, and costs could be offset through the contribution of these efforts towards mitigation 404 

of disease emergence and future pandemics92. An experimental network based on voluntary 405 

participation, in which contributors benefit from the results of the model by submitting their data 406 

to help improve it, would reduce costs and extend its reach into under-resourced areas, paying 407 

dividends over the long-term. Finally, to scale predictions of spillover risk beyond well-408 

characterized sentinel landscapes, detailed global inventories of hosts, vectors and their parasites 409 

will be required. Large-scale data-gathering programs already exist for phenotypic and genetic 410 

diversity of vertebrates, vectors and their pathogens (e.g. PanTHERIA, ViPR (Virus Pathogen 411 

resource), NCBI GenBank, VectorBase, Barcode of Life Database (BOLD)) and proposed 412 
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initiatives such as the Global Virome Project93 and a Global Parasite Project30 will be central to 413 

these global efforts.  414 

 Progress in linking complex parasite-host-environment systems with elegant 415 

mathematical expressions would represent huge advances in the fields of disease ecology, and 416 

success should therefore not be assumed. The computational power required to simulate complex 417 

systems is a major hurdle. Nevertheless, the development of global general ecosystem models 418 

has proven to be achievable by reducing dimensionality (grouping organisms into functional 419 

groups, and cohorts within functional groups)26. Because GEpMs would necessarily simplify 420 

episystems into trait-based groups of pathogens, they will not possess the predictive power to 421 

model the behavior of specific pathogens, or determine exactly where and when new pathogens 422 

will emerge. For this reason, where the goal is to inform management of the risk associated with 423 

specific diseases, we recommend that GEpMs are coupled with more traditional epidemiological 424 

models/approaches. By unlocking broader principles that underlie epidemiological processes 425 

(sensu Lafferty et al.35), GEpMs could lead to breakthroughs in the design of more detailed, 426 

accurate statistical or agent-based models of specific diseases, while identifying areas that 427 

require further investigation.  428 

 In the midst of a global pandemic of wildlife origin, the need for models that consider the 429 

full ecological and anthropological contexts of disease transmission is clear. By challenging 430 

scientists to reconstruct epidemiological processes from the bottom-up and on the basis of 431 

ecological principles, systems models could form a new frontier in epidemiology, uncovering 432 

new processes and ultimately improving our understanding of disease emergence, and ability to 433 

target surveillance activities and interventions at a global scale. The potential benefits to 434 
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understanding health across species, communities and ecosystems across the planet are 435 

enormous.  436 

 437 
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Box 1: Modeling parasites as cohorts 686 

Grouping individuals by their ecological traits is the principal form of dimension reduction used 687 

in General Ecosystem Models (GEMs), and an approach that we propose could also be applied 688 

when developing GEpMs. In terrestrial GEMs, autotrophs (plants) and heterotrophs 689 

(herbivorous, omnivorous, and carnivorous animals) are grouped by nutrition source, mobility, 690 

leaf strategy (autotrophs), mobility, reproductive strategy, and thermoregulation mode 691 

(heterotrophs). GEpMs would extend GEMs, adding parasites as a second group of heterotrophs 692 

that are modelled differently to their hosts (see Harfoot et al.26 for a detailed description of how 693 

autotrophs and heterotrophs are modelled in GEMs). Drawing on generalized frameworks 694 

developed by Pedersen & Fenton94, Lafferty et al.35 and Lello & Hussell32 we propose six 695 

categorical traits that represent the ecological processes conducted by parasites, and their 696 

interactions with hosts (Table 1). Once grouped by these traits, the resource exploitation 697 

strategies of individual parasites within each cohort would be modelled using the same 698 

mathematical expressions that represent; (i) consumption strategy and impact on host fitness;  (ii) 699 

immune stimulation and immune evasion (e.g., quiescence); (iii) reproduction; (iv) mortality 700 

resulting from the host immune system, or as a result of background mortality processes such as 701 
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senescence; and (v) dispersion from their current grid cell to another grid cell (Figure 3). The 702 

impact of parasites on host fitness (e.g., through consumer strategies that either reduce host 703 

fitness to zero or have a density dependent reduction on the reproductive performance of hosts) 704 

would feed back into the modelling of host heterotroph cohorts, and their effects on autotroph 705 

biomass. 706 

 707 

Case study: hazard posed by negative-strand RNA viruses in changing terrestrial systems. 708 

Human-mediated ecosystem change is considered an important driver of animal-to-human 709 

pathogen spillover, but the macro-ecological processes by which this occurs are rarely studied 710 

and poorly understood95. GEpMs would offer a unique opportunity to simulate the impacts of 711 

ecosystem changes (e.g., land use change, harvesting of wild animals) on host populations, and 712 

emerging pathogens. Using this as a scenario to demonstrate the potential application of 713 

GEpM’s, we describe how a prototype model could be used to study the dynamics of negative-714 

strand (NS)-RNA viruses in wild animals, generate predictions of the hazard they pose to 715 

humans, and design interventions to protect human health. Following the functional groupings in 716 

Table 1, models could target parasites described using the categorical traits ‘Pathogen | 717 

Intracellular-RNA-reverse transcription | Horizontal-direct | Cellular/Humoral/T-helper cell’. By 718 

specifying these classifications, important zoonotic viral families such as orthomyxoviruses, 719 

paramyxoviruses and filoviruses would be targeted. 720 

 Figure 3 depicts how modeling studies conducted across grid cells at different resolutions 721 

could assess the GEpM’s capacity to simulate ecosystem-scale dynamics across trophic levels 722 

from which (NS)-RNA virus properties emerge, and generate high-resolution predictions of the 723 

relative abundance/biomass of (NS)-RNA viruses at specific sites undergoing ecosystem 724 
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changes. By sourcing environmental input data from closely monitored sites experiencing 725 

changes in land use over a defined period, and aligning this to the time steps over which 726 

simulations occur, the predicted responses of host and parasite cohorts could be evaluated against 727 

empirical data on vegetation, host and parasite abundance. A term that simulates harvesting of 728 

certain wild animal host cohorts could then be added to the model to investigate how specific 729 

changes in trophic structure influence parasite dynamics96. As an emergent property of the 730 

GEpM, the relative abundance and biomass of the (NS)-RNA virus cohort could estimate 731 

‘pathogen pressure’ for each grid cell on which the model is run – representing the quantity of 732 

(NS)-RNA viruses in wildlife to which humans could be exposed at a given point in space and 733 

time. Over multiple grid cells, these predictions would represent the distribution of wild animals 734 

carrying these pathogens, and the intensity with which they are infected and shedding them (i.e., 735 

persistence and transmission within wild animal populations). When combined with information 736 

on human-wildlife interactions and human susceptibility to infection, this data could be used to 737 

predict spillover risk at local, national and global scales. Including livestock hosts would 738 

increase the accuracy of these models, and we demonstrate how this could be achieved in Figure 739 

3. 740 

Furthermore, these models could permit “in-silico” design and testing of interventions 741 

aimed at maintaining stable population dynamics of species and their pathogens and mediating 742 

human behavior in a way that minimizes the impact of land-use change on biodiversity and 743 

human health. For example, a GEpM that describes changes in the predator-prey dynamics of 744 

non-human primates in response to fragmentation of tropical forests, and predicts how this 745 

impacts their exposure to zoonotic viruses, could be used to forecast the human health risks 746 

posed by hunting these species within a given area, and target educational campaigns at 747 
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communities who rely on non-human primates as a food source. As new empirical findings 748 

emerge, GEpMs could be used to scale and test competing hypotheses for how ecosystem 749 

stressors impact host assemblages and the (NS)-RNA viruses they carry, identifying critical 750 

processes that require further investigation. 751 

 752 

 753 

Resource 

Use 

Reproductive Strategy Metabolism Immune 

Response  

Evolution 

Consumer 
Strategy [35] 

Location [97] Dispersal Host 
Breadth [98] 

Dormancy/Cellular 
Quiescence [99] 

Type of 
Immune 

Response 
[94,100]  

Clonality 
[46] 

Castrator Intracellular, 
DNA reverse 
transcription 

Horizontal 
- direct 

Composite 
measure for 
each 
pathogen 
functional 
group based 
on 
databases of 
host-parasite 
associations. 
 

No dormant phase Cellular Clonal 

Macroparasite Intracellular, 
DNA non-
reverse 
transcription 

Horizontal 
- indirect 

Can perform 
dormancy  

Humoral Not clonal 

Pathogen  Intracellular, 
RNA reverse 
transcription 

Vertical   T-helper cell  

Parasitoid Intracellular, 
RNA non-
reverse 
transcription 

  
  
  
  
  
  
  

  
  
  
  
  
  
  

 

  

  

  

  

  

  

Intracellular, 
binary fission / 
horizontal 
gene transfer 

Extracellular, 
within-host, 
asexual 

Extracellular, 
within-host, 
sexual 

Extracellular, 
environmental, 
asexual 

Extracellular, 
environmental, 
sexual 
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Table 1. Parasite functional groups. To simplify the process of modeling diverse parasite 756 

communities, we propose splitting parasites into functionally related groups that represent their 757 

consumer strategies, reproductive and metabolic processes, interaction with the host‘s immune 758 

response and evolutionary traits. These classifications represent how parasites i) use host 759 

resources (what they eat and how this impacts host fitness), ii) reproduce (how they reproduce, 760 

and the mode and extent of their dissemination to other hosts), iii) respond to stressors (whether 761 

they are capable of entering dormancy or not), iv) activate the host immune response 762 

(components of the host immune system that are stimulated by each pathogen functional group), 763 

and v) evolve (as differentiated by the levels of genetic recombination that parasites undergo).  764 

 765 

 766 

Figure 1. Diagrammatic representation of a disease episystem, depicting interactions 767 

between pathogens, their hosts and the environment, and the interface for spillover into 768 

people. Pictures represent four terrestrial and marine biomes (forest, grassland, coral reef and 769 
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kelp forest), and colored boxes nested within this represent host (animal and human), vector and 770 

pathogen populations. Anthropogenic factors that drive changes in environment, host and vector 771 

populations are depicted in grey, with arrows showing directionality of these effects. White 772 

boxes within animal host and vector compartments represent classic consumer-resource models, 773 

depicting host-environment, host-pathogen and vector-pathogen interactions (adapted from 774 

Lafferty et al.21). Circles within boxes are state variables for questing (Q), attacking (A), and 775 

consuming (C) consumers (blue – predators, or pathogens) and susceptible (S), exposed (E), 776 

ingested (I), and resistant (R) resources (green – autotrophs, or hosts). Per Lafferty et al.21, 777 

arrows represent transitions (of individuals or biomass) among states – a dashed line represents 778 

production or conversion (e.g., births), whereas a solid line is a transition from one state to 779 

another (implying no change in numbers from one state to the next). Circles numbered “1” for 780 

the model of vector-borne pathogen dynamics represent processes occurring in the vector, and 781 

those numbered “2” represent processes occurring in the host.  782 

 783 
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 784 

 785 

Figure 2. Iterative development of an ecosystem model for infectious disease (General 786 

Episystems Model - GEpM). Panel 1: Development of an ecosystem model for infectious 787 

disease would be an iterative process, in which systems models (collections of interacting models 788 

representing the GEpM) are constrained and tested through field and laboratory experiments 789 

conducted over varying spatial and temporal scales. In this way, statistical models that explain 790 

complex but important relationships could be incorporated into a mechanistic modeling 791 

framework, as a means of decreasing complexity while maintaining predictive power. Types of 792 

experiment depicted represent a) ‘real world’ field experiments, where studies investigate 793 

species turnover and related evolutionary processes along gradients of anthropogenic stress in 794 

ecosystems; b) controlled field trials, where conditions that closely mimic the ecological 795 

processes of interest are simulated to improve model accuracy; c) controlled laboratory trials, 796 
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where conditions that closely mimic the microbiological (both ecology and evolutionary) 797 

processes of interest are simulated to improve model accuracy. To capture the multitude of 798 

ecological scales across which parasites interact with one-another and their hosts, and these 799 

interactions are filtered by environmental variables, experiments would need to take place across 800 

spatial and temporal scales. Together, these experiments also serve to address unanswered 801 

questions in ecology and microbiology—as identified during model development—improving 802 

predictive capability and simplifying model structure. Panel 2: Initial steps that could be taken 803 

towards the development of GEpMs are outlined in this table, along with some of the key 804 

challenges facing development of these models. 805 
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Figure 3. Schematic of a General Episystems Model (GEpM) as applied to predict the hazard 855 

posed by Negative-strand RNA viruses. Panel A: Following the Madingley model26, wildlife 856 

are modelled as individuals within cohorts, defined by categorical and quantitative traits. 857 

Autotroph biomass (derived from spatially explicit land use per grid cell and climatic variables, 858 

economic data and the availability of forage) are used as input data into the wildlife (1) and 859 

livestock (2) models. Each grid cell is stocked with initial densities of wildlife, livestock and their 860 

parasites, which could be negatively scaled to body masses randomly drawn from a designated 861 

range for each cohort26. A term that simulates commercial harvesting of livestock could be 862 

included in livestock models (2*). Allometric relationships, combined with spatial models in 1 and 863 

2 lead to emergent properties of wildlife and livestock cohorts across a grid cell (3). Parasites are 864 

also modelled as cohorts of functionally related taxa. Emergent properties of wildlife and livestock 865 

cohorts (‘host pools’) in each grid cell inform allometric relationships between parasites and their 866 

hosts, and models which capture transmission between hosts (4). Emergent properties of parasite 867 

models feed back to impact host dynamics, and result in measures of parasite community structure 868 

that can be projected across grid cells – including the abundance/biomass of pathogen cohorts (5). 869 

Mathematical expressions couple changes in host and pathogen dynamics with socioeconomic and 870 

behavioral models to predict zoonotic spillover risk (6). Panel B: The GEpM is used to A) make 871 

basic assessments of ecosystem dynamics across trophic scales from which (NS)-RNA virus 872 

properties emerge, and assess whether these dynamics reach an equilibrium (colors represent 873 

different host and parasite cohorts); B) make high-resolution predictions of the relative 874 

abundance/biomass of (NS)-RNA viruses at specific sites, where empirical data on vegetation, 875 

mammalian and parasite abundance or biomass exist; C) extend these predictions to forecast 876 

changes in relative abundance/biomass of (NS)-RNA viruses in response to land-use change or 877 

harvesting of certain host cohorts at specific sites, and D) make global, lower-resolution 878 

predictions of the relative abundance/biomass of (NS)-RNA viruses 879 

 880 


